@ TATSOFT

Deploying Al on the Plant Floor with
FrameworX and ML.NET

Aim high, start simple, scale without limits.

@ What we’'ll cover today

Agenda

Tatsoft + FrameworX: the platform context

Why ML is becoming practical in industrial systems

Why ML.NET fits naturally inside a .NET-based platform

Demo: anomaly detection with ML.NET — operational data in FrameworX

Plus: a quick look at MCP (connecting to external Al services)

Q&A

@ Who will be presenting

Meet our team

ES8ET

YSTUDIO POWERED BY FRAMEWORX

tion > Selected:

Dave Hellyer Eduardo Bogo Isabela Taccolini Scott Gray

VP of Business Development Automation Engineer Marketing Director Senior Solutions Consultant

®

Tatsoft + FrameworX

ol
® Tatsoft

About our company

An Ecolab Company

Chevron
« 30+ years building industrial real-time software '. - AstraZeneca&} NALCO Water

* Founded by the original creators of InduSoft

* Global operations (US, Brazil, Europe, Asia) GE Aviation dﬂﬂ(lﬂ?’ NEC

» Deployed across manufacturing, energy, water, F&B,
life sciences, transportation, O&G, data centers
« Focus: production industrial infrastructure (not an ALSTOM ca’rg"”“ @

experimental analytics tool) BOMBARDIER

Nestle. ™ cerpau usmmes |

M fomonfohmor

©

V7

FrameworX

Unified SCADA + lloT platform

.NET 8 managed architecture + native Python 3 support
Single unified platform (not a collection of add-ons)

Alarms, historian, security, scripting, MQTT,
connectivity, visualization — in one designer + runtime

Deploy the same project to edge devices, servers, VMs,
or containers

This unified foundation makes ML practical (results
become operational data)

Data Modelling Devices and
and Tags Field Communication
B
Historian and 4 ¥ s

Displays

Time-Series Data @
@9 and Dashboards

/

1

Security o

lag Reports

Data Explorer ﬁ @ Scripts

Datasets

Alarms, Alerts
(Databases)

and Events

Practical Reasons

@ Why .NET matters (in industrial systems)

 Modern managed runtime: performance, debugging,

versioning, long-term support N MicrOSOft

* One runtime for scripts, calculations, alarms, business
logic — and machine learning
» Avoids “bolt-on” execution environments that make ®

production integration fragile

@ Why ML matters (inside the platform)

Operationalizing ML

» External ML can create gaps: duplicated data, fragile
integrations, limited visibility

* When ML runs inside FrameworX, results become
first-class operational data

* ML outputs can be alarmed, historized, visualized, and
acted on like any other signal

®

Why Machine Learning in
Industrial Applications?

@ Why use machine learning?

Practical Value

* Optimize processes and improve outcomes

* Retain expertise (capture “tribal knowledge”
before it walks out the door)

» Scale insights across the whole plant — not just
one machine at a time

@ Ways ML Can Improve a Process

Practical Value

* Increase production output

* Reduce scrap and rework

» Shorter cycle times

* Reduce unplanned downtime

* Improve product quality

* Energy savings and better scheduling

* Root cause analysis support

@ Where ML delivers the best ROI

A practical starting shortlist

Predictive maintenance Defect detection

Detect issues early and avoid downtime Flag quality problems before they ship
Process optimization Production forecasting

Tune setpoints, reduce scrap, improve Plan scheduling and materials with better

throughput accuracy

@ ML Models and Practical Examples

Real-life applications

Binary classification Fail in next 24 hours?
Multiclass classification Which defect type?
Regression Estimate cycle time or energy consumption
Time-series forecasting Forecast hourly production output
Anomaly detection Abnormal vibration/temperature patterns
Clustering Normal vs stressed vs inefficient operating states
Decision trees / random forests Which variables drive failures?

Gradient-boosted trees Complex relationships to improve yield

e
@ Koy Takeavay

ne thing to remem

Machine learning complements
fraditional control logic — it
doesn’t replace it.

@ ML.NET inside FrameworX

Complete Solution

Typical Data type: structured/tabular sensor data
(temp, vibration, pressure)

Speed: fast, compiled

Integration: full .NET/C# compatibility; deploy
inside FrameworX without external runtimes

Model Building: Visual Studio Model Builder extension
to create/train/evaluate to create code or manually
written code which calls methods

@ ML.NET Model Builder

Visual Studio

o File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search VisualStudio.. # myMLApp ® - o «x
o-O S-2 W& -7 - Debugr AnyCPU - myMLApp - ¥ myMLApp - | @ Live Share &

ML.NET Model Builder = X ~ Solution Explorer
COoORAE. DB S -
Build your machine learning model Search Solution Explorer (Ctri+;) 2~
. Code & Solution 'myMLApp' (3 projects)
1. Scenario
) 4 = myMLApp
Add machine izaming model and projects for model consumption and wraining 10 your soiution "
2. Data » & Dependencies
D comments.tsv
b o Program.cs
4. Evaluate « = myMLlAppML.ConsoleApp
Next Steps = Dependencies
= ModelBuilder.cs
o Program.cs
« & myMLAppML.Model
2. Consume = Dependencies

Add reference to genarated library project and use the code below - DataModels

0 MLModel.zip

saysadoly

1310)dx3 13135

X0qjoo]

3. Train

5. Code
1. Try

Run ConsoleApp to try the model

// Add ML.NET namespaces
using Microsoft.ML;

public void ConsumeModel ()

{

// Load the model

MLContext mlContext = new MLContext():

ITransformer mlModel = mlContext.Model.Load("MLModel.zip",
out var modelInputSchema) :

war nradinrine =

Solution Explorer

Output Error List

7 Ready + Add to Source Control ~ &

@ Python-based libraries

Complete Solution

Typical Data type: complex or time-series sensor
data

Speed: Slower, interpreted

Integration: Run Python code in FrameworX

Model Building: Write code to access open-
source machine learning libraries. Typically
create a pipeline of scripts to build required
functionality.

@ Choose the right tool for the job

ML.NET vs Python (both are valid)
ML.NET/C# + Python support — deploy the right approach for each application.

When ML.NET is a great fit When Python is a great fit

« Speed matters (fast reactions, real-time » Richer ML ecosystem and libraries
setpoint/decisions)

« Tight .NET integration

» Deep learning / neural networks

» Heauvier, offline analysis and planning

« Easy, menu-driven code creation with Model
Builder

®

Demo: ML inside FrameworX

~, .
® Anomaly Detection

Machine Learning

1600
1400
1200
1000
800
600
400
200

o

W wY WOYETY W WY YYW 'YYWY YY WYY WY W WY W ITY P WYY RNE Y

— O O W ™~
— o~ & 0 =f

e Temperature

o P oy erDraw

Anomaly Detection

m'ﬂ'mm‘—icmmhmmg

LK M~ o ;M © O & 00 =f

o R B B I B B

——— Pressure ——\/ibration

s AcousticLeve| e—FowRate

— o Oy O M~ D

o
M~ 0 @ G O 1 &
Lo e B o B e Y V[0 B

== BotationSpeed

Ly
4]
]

Mame Value
AccousticLevel T6.7466956907482
FlowRate 26.4813852177961
IsAbrormal Abnormal]
PowerDraw 53.8901434565185
Pressure 12.4006607336845
RotationSpeed 1500.1589601594
Score 0.60468852519989]
Temperature 99.3493622188511
Vibration 3.14479811491097

Mame Value
AccousticLevel £9.3046045778247
FlowRate 26.6561734396889
IsAbrormal Mormal]
PowerDraw 47.48323470761861
Pressure 13.5059260954551
RotationSpeed 14958.67228179664
Score 0.33594 7730064392 ‘I]
Temperature T8.69096222053799
Vibration 3.23727443229141

e ML.
® ML.NET Workflow

A repeatable 7-step pattern

1. Load data 2. Create input/output classes
3. Build a pipeline 4. Train model
5. Evaluate model 6. Save model

7. Use model with new data

@ Why predictive maintenance?

Reactive vs preventive vs predictive

Strategy

Reactive maintenance

Preventive
maintenance

Predictive
maintenance

Description

Fix when it breaks

Fix on a fixed schedule

Fix based on actual condition & predictions

Pros

Low upfront cost

Structured planning

Optimized cost, minimal
downtime

Cons

High downtime,
unpredictable

Can cause over- or under-
maintenance

Requires data, sensors,
analytics

@ Tablet Compression Machine

5-step approach

>

practical way to start:
Collect healthy data (normal operation only)

Train an anomaly detection model (learn “normal”)

Monitor live machine data (current readings)

Il&l].il !

wm N o

Detect & notify (normal vs anomaly — alarm)

Act on the alert (assess severity; schedule maintenance)

@ MCP (Model Context Protocol) — quick look

Connecting FrameworX to external Al services

* FrameworX can connect to external Al

services / cloud models via MCP MCP Protocol Architecture

 This is most useful when you want natural- |
language access to operational context el P Protocol i i

(Claude / GPT) Model Context Protocol Solution

« Example: query historian + ML outputs
(“Which motors look likely to fail next month?”)

« We'll keep this grounded: operational data
first, then Al on top

Structured Methods

®
Wrap-Up + Q&A

~, . .
© Practical guidance

How to succeed with ML in operations

Start small: pick one asset/process and one clear question
Anomaly detection is often the best first step (no labeled data required)

Expand gradually: more signals, tuning, thresholds, forecasting/regression,
external models

Re-train: ML improves through feedback and re-training

The hardest part isn’t the code — it’s the data (quality,
consistency, context)

e
@ Koy Tekeaway

ne thing to remem

Machine learning works best
when it is part of the system —
not a separate experiment.

Start small e Re-train e Let the platform do the heavy lifting

Q&A

Thanks for joining!

« Schedule a call with our team
* Download the software and start today

tatsoft.com/ml

T
L

Y

: et (4 | i
% £ /
7 /% 7 R [&
;lw ; 2 5 < 2 Z e R iia——
7 /‘ 7 ’ 1Pz '//)
f Ly | Z 4
i /IJI,L,(J/AIM § i;—,_'—: :

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Anomaly Detection
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

